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LETTER TO THE EDITOR 

The dynamics of the Bean critical state 

W Barford, W H Beere and M Steer 
Depmment of Physics, The University of Sheffield, Sheffield, S3 7RH, UK 

Received 30 April 1993 

Abstract A simple one-dimensional model to simulate the establishment of the Bean critical 
slate is introduced. It is shown that Ihe dynamics of the flux lines as they enter the superconduclor 
are dominated by ‘avalanches’. The distribution o f  dislances moved by vonices in the avalanches 
obeys a power law with an exponent of - 1. This suggesu lhat Ihe Bean sfale is a self-organized 
critical stare. me density of flux lincs is parablic. 

The motion of flux lines in a type II superconductor results in phase slip and hence 
dissipation, since a potential difference is required to maintain the phase difference. If 
a current is passed through a superconductor a non-uniform distribution of flux density will 
be established. To prevent the flux lines from sliding, and hence causing dissipation, the 
flux lines must be pinned by crystalline defects or random inhomogeneities. If, however, 
the magnetic pressure gradient exceeds the pinning force movement of flux lines arises [I]. 
This defines the critical current density, j,. An understanding of the onset of flux motion 
is therefore important in understanding the I -V characteristics of type U superconductors. 
This in turn depends on an understanding of the non-equilibrium distribution of flux line 
density, and the manner in which it is established. 

The Bean critical state describes the metastable distribution of flux density in a dirty 
superconductor 121. Observation of I/f noise when this state is perturbed by external 
magnetic fields [3,4] leads to the suggestion that this critical state is in fact a self-organized 
critical (soc) state, that is one which is established dynamically in a dissipative system and 
which is always on the brink of an instability [5]. A soc state is also characterized by 
having no intrinsic length and time scales. 

To investigate the dynamics of the Bean critical state we have devised a simple one- 
dimensional simulation. In this simulation we have in mind the movement of flux lines into 
a semi-infinite superconductor as an external magnetic field is tumed on. We envisage flux 
lines, which are nucleated on the surface of the superconductor by the surface current, being 
driven into the superconductor by their mutual repulsive interactions. A random distribution 
of pinning centres pins the vortices as they propagate through the superconductor, hence 
establishing the Bean critical state. 

Let us now describe the model in more detail. Rather than using the correct inter-vortex 
potential, namely K&;j/A),  we adopt a simplified short-range version introduced by Pla 
and Nori [61 in the interests of numerical simplicity. In particular, the potential experienced 
by a vortex at xi from the other vortices is 

(1) 
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The mutual force between the ith and jth vortex, fij = -aVj /ax i j ,  therefore has a range 
5" and decreases linearly with separation. 

The distribution of pinning centres, { x u } ,  is taken to be pseudo-random, that is the 
pinning centre interactions do not overlap and there is a maximum permissible separation 
distance. We assumed two types of interaction between the pinning centres and the vortices: 
a finite range Hooke's law 

and a sinusoidal dependence, 

At the surface of the superconductor, x = 0, there is a force, F ,  of range fu driving in the 
vortices. 

It is convenient to introduce a dimensionless interaction strength, q. as the ratio of the 
work done in  removing a vortex from a pinning centre to the work done in bringing two 
vortices together, namely, 

q = lm f;a(xic)bie/ J," h,(xij)&ij. (3) 

For the vortex-pinning centre interaction (2a) this is, ( fJ2) / (Av&/Z)  while for the 
interaction (2h) it is, ( f p / ~ ) / ( A v f u / 2 ) .  Values of q << 1, 2 1, and >> 1 represent Weak, 
intermediate to strong and very strong pinning, respectively. We work in the intermediate 
to strong pinning regime, scale all lengths by 6. and take e,, = 6". 

Let us now describe the simulation. The driving force, F, is turned on slowly from 
zero in increments of 0.01. Initially there are no vortices in the superconductor. At each 
increment of F vortices are allowed to enter the superconductor and attain their equilibrium 
positions. This is determined by the net force on each vortex, resulting from the other 
vortices and the pinning centres, being zero. As the vortices enter the superconductor they 
shunt other vortices further along, thereby building up a distribution of flux line density [71. 
By the nature of this one dimensional simulation each vortex usually has (at least) two 
neighbours with which i t  is interacting. Hence, if a vortex enters the superconductor all 
the vortices will move forward. Typically there is 'stick-slip' behaviour: as F is increased 
vortices will be unable to enter the superconductor owing to the outward pressure from the 
pinned vortices. However, for a critical value of F this outward force will be overcome 
and vortices will flood in causing an 'avalanche' of flux motion. It is important to note that 
these 'avalanches' usually cause all the vortices to move. Hence, there is no distribution of 
avalanche sizes as one expects in a two- or three-dimensional simulation. However, there is 
a distribution of the distances moved by the vortices which shows scaling behaviour 181. In 
figure I(a) we plot the distribution of vortices moving a distance d for the interaction (2a) 
with q = 1. To obtain this plot the force has been increased from 0 to 3 in steps of 0.01. 
For each increment of F the number of vortices moving a distanced + d+Ad is recorded. 
The figure represents the integrated distribution up to F = 3, at which point 192 vortices 
have entered the superconductor. The slope is -1.00 over three orders of magnitude. Very 
similar results were found for the interaction (2b), with r~ = 2/n, shown in figure I@). In 
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Figure 1. (a) The number of vortices (arbiuarily normalized) moving a dislance d versus d for 
the interaction (20). The distance i s  scaled by 6,. The exlemal force, F ,  has been increased 
f" 0 to 3 in increments of 0.01. with a pinning strength, q = I. (6) The same Bs (a) with the 
interaction (Ib).  F has been increased from 0 to 1 in increments of 0.001 and 0 = 2/R. 

l t  .'\; Figure 2. The flux density for 192 vortices using the 
interaction (20). The sauxes represent the average 
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density at a pinning centre, averaged over neighbouring 
IO ?o m a  a pinning centres. The dashed l i n e  i s  a parabolic f i t  to 

the data. 

this case F was increased from 0 to I in increments of 0.001. In the best linear region, 
from d = 0.001 to 0.1, the slope is close to -1. 

We next consider the density of flux lines after 192 have entered the superconductor. 
This is shown in figure 2 where the squares represent the density of vortices at a pinning 
centre averaged over neighbouring pinning centres. The dashed line is a parabolic fit to 
the data. It is revealing to note that this density distribution is precisely what one would 
predict in the Bean critical state if the average pinning force is independent of local flux 
density. To see this we recall that the Bean critical state is specified when the force from 
the pinning centres balances the magnetic force arising from the gradient in the magnetic 
pressure [11, namely, 

in one dimension. If fc is assumed constant, this is easily integrated to give a magnetic 
profile of 

B ( x )  = B(0) (1  - X / A ) ' ~  
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where A = 8irfcB(0)2. 
In conclusion, we have introduced a simple onedimensional model to simulate the 

establishment of the Bean critical state. We showed that the dynamics of the flux lines as 
they enter the superconductor is dominated by ‘avalanches’. The distribution of distances 
moved by vortices in the avalanches follows a power law behaviour with an exponent of 
- I .  This would suggest that the density distribution of flux lines is a self-organized critical 
state. Finally, we found that the density of flux lines follows a parabolic behaviour, valid 
in the Bean model with a constant pinning force. 

There are various ways in which this model is deficient. Most obviously, it is a one- 
dimensional simulation, so the flux lines always have two neighbours and disturbances 
propogate through the entire system. It also means that flux lines cannot slide pass one 
another. Secondly, the correct long-range inter-vorkx potential was not used. Such a 
long range potential means that in practice each vortex interacts directly with many other 
vortices, leading to’the concept of the vortex bundle 191. This may effect the validity of the 
self-organized criticality picture. 

We thank J E Bishop and G A Gehring for useful discussions. WB also acknowledges 
support from the SERC (United Kingdom) (grant ref. GRm5445). 

N o a  ndded in proof: ‘Stick-slip’ behaviour has recently been observed in the Bean critical state for single. 
unwinned crystals of YBaCuO [IO]. 
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